
14 Semiconductors (extracted from the Richard Feyman lectures)

14–1 Electrons and holes in semiconductors
There are large numbers of semiconductors known, but we’ll concentrate on those which now have the
greatest technical application. They are also the ones that are best understood, and in understanding them
we will obtain a degree of understanding of many of the others. The semiconductor substances in most
common use today are silicon and germanium. These elements crystallize in the diamond lattice, a kind
of cubic structure in which the atoms have tetrahedral bonding with their four nearest neighbors. They
are insulators at very low temperatures—near absolute zero—although they do conduct electricity
somewhat at room temperature. They are not metals; they are called semiconductors.

If we somehow put an extra electron into a crystal of silicon or germanium which is at a low
temperature, we will have just the situation we described in the last chapter. The electron will be able to
wander around in the crystal jumping from one atomic site to the next. Actually, we have looked only at
the behavior of electrons in a rectangular lattice, and the equations would be somewhat different for the
real lattice of silicon or germanium. All of the essential points are, however, illustrated by the results for
the rectangular lattice.

These electrons can have energies only in a certain energy band—called the conduction band.
Within this band the energy is related to the wave-number  of the probability amplitude  by

The ’s are the amplitudes for jumping in the -, -, and -directions, and , , and  are the lattice
spacings in these directions.

For energies near the bottom of the band, we can approximate Eq. (14.1) by
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Fig. 14–1.The energy diagram for an electron in an insulating crystal.

If we think of electron motion in some particular direction, so that the components of  are always in
the same ratio, the energy is a quadratic function of the wave number—and as we have seen of the
momentum of the electron. We can write

where  is some constant, and we can make a graph of  versus  as in Fig. 14–1. We’ll call such a
graph an “energy diagram.” An electron in a particular state of energy and momentum can be indicated
by a point such as  in the figure.

We can have a similar situation if we remove an electron from a
neutral insulator. Then, an electron can jump over from a nearby atom and fill the “hole,” but leaving
another “hole” at the atom it started from. We can describe this behavior by writing an amplitude to find
the hole at any particular atom, and by saying that the hole can jump from one atom to the next. (Clearly,
the amplitudes  that the hole jumps from atom  to atom  is just the same as the amplitude that an
electron on atom  jumps into the hole at atom .) The mathematics is just the same for the hole as it
was for the extra electron, and we get again that the energy of the hole is related to its wave number by
an equation just like Eq. (14.1) or (14.2), except, of course, with different numerical values for the
amplitudes , , and . The hole has an energy related to the wave number of its probability
amplitudes. Its energy lies in a restricted band, and near the bottom of the band its energy varies
quadratically with the wave number—or momentum—just as in Fig. 14–1. 

We also find that the hole also behaves like a classical particle with a certain effective
mass—except that in noncubic crystals the mass depends on the direction of motion. So the hole
behaves like a positive particle moving through the crystal. The charge of the hole-particle is positive,
because it is located at the site of a missing electron; and when it moves in one direction there are
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actually electrons moving in the opposite direction.

If we put several electrons into a neutral crystal, they will move around much like the atoms of a
low-pressure gas. If there are not too many, their interactions will not be very important. If we then put
an electric field across the crystal, the electrons will start to move and an electric current will flow.
Eventually they would all be drawn to one edge of the crystal, and, if there is a metal electrode there,
they would be collected, leaving the crystal neutral.

Similarly we could put many holes into a crystal. They would roam around at random unless there is an
electric field. With a field they would flow toward the negative terminal, and would be
“collected”—what actually happens is that they are neutralized by electrons from the metal terminal.

One can also have both holes and electrons together. If there are not too many, they will all go their way
independently. With an electric field, they will all contribute to the current. For obvious reasons,
electrons are called the negative carriers and the holes are called the positive carriers.

We have so far considered that electrons are put into the crystal from the outside, or are removed to
make a hole. It is also possible to “create” an electron-hole pair by taking a bound electron away from
one neutral atom and putting it some distance away in the same crystal. We then have a free electron and
a free hole, and the two can move about as we have described.

Fig. 14–2.The energy  is required to “create” a free electron.E −



Fig. 14–3.The energy  is required to “create” a hole in the state .

The energy required to put an electron into a state —we say to “create” the state —is the energy 
shown in Fig. 14–2. It is some energy above . The energy required to “create” a hole in some
state  is the energy  of Fig. 14–3, which is some energy greater than . Now if we create a
pair in the states  and , the energy required is just .

The creation of pairs is a common process (as we will see later), so many people like to put Fig. 14–2
and Fig. 14–3 together on the same graph—with the hole energy plotted downward, although it is, of
course a positive energy. We have combined our two graphs in this way in Fig. 14–4. The advantage of
such a graph is that the energy  required to create a pair with the electron in  and
the hole in  is just the vertical distance between  and  as shown in Fig. 14–4. The minimum
energy required to create a pair is called the “gap” energy and is equal to .
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Fig. 14–4.Energy diagrams for an electron and a hole drawn together.

Sometimes you will see a simpler diagram called an energy level diagram which is drawn when people
are not interested in the  variable. Such a diagram—shown in Fig. 14–5—just shows the possible
energies for the electrons and holes.1
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Fig. 14–5.Energy level diagram for electrons and holes.



How can electron-hole pairs be created? At any
finite temperature there is still another mechanism by which electron-hole pairs can be created. The pair
energy can be provided from the thermal energy of the crystal. The thermal vibrations of the crystal can
transfer their energy to a pair—giving rise to “spontaneous” creation.

The probability per unit time that the energy as large as the gap energy  will be concentrated at one
atomic site is proportional to , where  is the temperature and  is Boltzmann’s constant.

Near absolute zero there is no appreciable probability, but as the temperature rises
there is an increasing probability of producing such pairs. At any finite temperature the production
should continue forever at a constant rate giving more and more negative and positive carriers. Of course
that does not happen because after a while the electrons and holes accidentally find each other—the
electron drops into the hole and the excess energy is given to the lattice. We say that the electron and
hole “annihilate.” There is a certain probability per second that a hole meets an electron and the two
things annihilate each other.

If the number of electrons per unit volume is  (  for negative carriers) and the density of positive
carriers is , the chance per unit time that an electron and a hole will find each other and annihilate is
proportional to the product . In equilibrium this rate must equal the rate that pairs are created.
You see that in equilibrium the product of  and  should be given by some constant times the
Boltzmann factor:

When we say constant, we mean nearly constant. A more complete theory—which includes more details
about how holes and electrons “find” each other—shows that the “constant” is slightly dependent upon
temperature, but the major dependence on temperature is in the exponential.

Let’s consider, as an example, a pure material which is originally neutral. At a finite temperature you
would expect the number of positive and negative carriers to be equal, . Then each of them
should vary with temperature as . The variation of many of the properties of a
semiconductor—the conductivity for example—is mainly determined by the exponential factor because
all the other factors vary much more slowly with temperature. The gap energy for germanium is about

 eV and for silicon  eV.

At room temperature  is about  of an electron volt. At these temperatures there are enough
holes and electrons to give a significant conductivity, while at, say, K—one-tenth of room
temperature—the conductivity is imperceptible. The gap energy of diamond is  or  eV and diamond is
a good insulator at room temperature.

14–2 Impure semiconductors
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There is still another way to put
electrons into the conduction band of a crystal. Suppose we imagine a crystal of
germanium in which one of the germanium atoms is replaced by an arsenic atom. The germanium atoms
have a valence of  and the crystal structure is controlled by the four valence electrons. Arsenic, on the
other hand, has a valence of . It turns out that a single arsenic atom can sit in the germanium lattice
(because it has approximately the correct size), but in doing so it must act as a valence  atom—using
four of its valence electrons to form the crystal bonds and having one electron left over. This extra
electron is very loosely attached—the binding energy is only about  of an electron volt. At room
temperature the electron easily picks up that much energy from the thermal energy of the crystal, and
then takes off on its own—moving about in the lattice as a free electron. An impurity atom such as the
arsenic is called a donor site because it can give up a negative carrier to the crystal. If a crystal of
germanium is grown from a melt to which a very small amount of arsenic has been added, the arsenic
donor sites will be distributed throughout the crystal and the crystal will have a certain density of
negative carriers built in.

You might think that these carriers would get swept away as soon as any small electric field was put
across the crystal. This will not happen, however, because the arsenic atoms in the body of the crystal
each have a positive charge. If the body of the crystal is to remain neutral, the average density of
negative carrier electrons must be equal to the density of donor sites. If you put two electrodes on the
edges of such a crystal and connect them to a battery, a current will flow; but as the carrier electrons are
swept out at one end, new conduction electrons must be introduced from the electrode on the other end
so that the average density of conduction electrons is left very nearly equal to the density of donor sites.

Since the donor sites are positively charged, there will be some tendency for them to capture some of the
conduction electrons as they diffuse around inside the crystal. A donor site can, therefore, act as a trap
such as those we discussed in the last section. But if the trapping energy is sufficiently small—as it is for
arsenic—the number of carriers which are trapped at any one time is a small fraction of the total. For a
complete understanding of the behavior of semiconductors one must take into account this trapping. For
the rest of our discussion, however, we will assume that the trapping energy is sufficiently low and the
temperature is sufficiently high, that all of the donor sites have given up their electrons. This is, of
course, just an approximation.

It is also possible to build into a germanium crystal some impurity atom whose valence is , such as
aluminum. The aluminum atom tries to act as a valence  object by stealing an extra electron. It can
steal an electron from some nearby germanium atom and end up as a negatively charged atom with an
effective valence of . Of course, when it steals the electron from a germanium atom, it leaves a hole
there; and this hole can wander around in the crystal as a positive carrier. An impurity atom which can
produce a hole in this way is called an acceptor because it “accepts” an electron. If a germanium or a
silicon crystal is grown from a melt to which a small amount of aluminum impurity has been added, the
crystal will have built-in a certain density of holes which can act as positive carriers.

When a donor or an acceptor impurity is added to a semiconductor, we say that the material has been
“doped.”

When a germanium crystal with some built-in donor impurities is at room temperature, some conduction
electrons are contributed by the thermally induced electron-hole pair creation as well as by the donor
sites. The electrons from both sources are, naturally, equivalent, and it is the total number  which
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comes into play in the statistical processes that lead to equilibrium. If the temperature is not too low, the
number of negative carriers contributed by the donor impurity atoms is roughly equal to the number of
impurity atoms present. In equilibrium Eq. (14.4) must still be valid; at a given temperature the
product  is determined. This means that if we add some donor impurity which increases , the
number  of positive carriers will have to decrease by such an amount that  is unchanged. If the
impurity concentration is high enough, the number  of negative carriers is determined by the number
of donor sites and is nearly independent of temperature—all of the variation in the exponential factor is
supplied by , even though it is much less than . An otherwise pure crystal with a small
concentration of donor impurity will have a majority of negative carriers; such a material is called an
“ -type” semiconductor.

If an acceptor-type impurity is added to the crystal lattice, some of the new holes will drift around and
annihilate some of the free electrons produced by thermal fluctuation. This process will go on until
Eq. (14.4) is satisfied. Under equilibrium conditions the number of positive carriers will be increased
and the number of negative carriers will be decreased, leaving the product a constant. A material with an
excess of positive carriers is called a “ -type” semiconductor.

If we put two electrodes on a piece of semiconductor crystal and connect them to a source of potential
difference, there will be an electric field inside the crystal. The electric field will cause the positive and
the negative carriers to move, and an electric current will flow. Let’s consider first what will happen in
an -type material in which there is a large majority of negative carriers. For such material we can
disregard the holes; they will contribute very little to the current because there are so few of them. In an
ideal crystal the carriers would move across without any impediment. In a real crystal at a finite
temperature, however,—especially in a crystal with some impurities—the electrons do not move
completely freely. They are continually making collisions which knock them out of their original
trajectories, that is, changing their momentum. These collisions are just exactly the scatterings we talked
about in the last chapter and occur at any irregularity in the crystal lattice. In an -type material the main
causes of scattering are the very donor sites that are producing the carriers. Since the conduction
electrons have a very slightly different energy at the donor sites, the probability waves are scattered from
that point. Even in a perfectly pure crystal, however, there are (at any finite temperature) irregularities in
the lattice due to thermal vibrations. From the classical point of view we can say that the atoms aren’t
lined up exactly on a regular lattice, but are, at any instant, slightly out of place due to their thermal
vibrations. We would like now to make an estimate of the electrical conductivity of such a material.

When an electric field is applied to an -type semiconductor, each negative carrier will be accelerated in
this field, picking up velocity until it is scattered from one of the donor sites. This means that the carriers
which are ordinarily moving about in a random fashion with their thermal energies will pick up an
average drift velocity along the lines of the electric field and give rise to a current through the crystal.
The drift velocity is in general rather small compared with the typical thermal velocities so that we can
estimate the current by assuming that the average time that the carrier travels between scatterings is a
constant. Let’s say that the negative carrier has an effective electric charge . In an electric field , the
force on the carrier will be . 
The average drift velocity is given by , where  is the force on the charge,  is
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the mean free time between collisions, and  is the mass. We should use the effective mass we
calculated in the last chapter but since we want to make a rough calculation we will suppose that this
effective mass is the same in all directions. Here we will call it . With this approximation the average
drift velocity will be

Knowing the drift velocity we can find the current. Electric current density  is just the number of
carriers per unit volume, , multiplied by the average drift velocity, and by the charge on each carrier.
The current density is therefore

We see that the current density is proportional to the electric field; such a semiconductor material obeys
Ohm’s law. The coefficient of proportionality between  and , the conductivity , is

For an -type material the conductivity is relatively independent of temperature. First, the number of
majority carriers  is determined primarily by the density of donors in the crystal (so long as the
temperature is not so low that too many of the carriers are trapped). Second, the mean time between
collisions  is mainly controlled by the density of impurity atoms, which is, of course, independent of
the temperature.

We can apply all the same arguments to a -type material, changing only the values of the parameters
which appear in Eq. (14.7). If there are comparable numbers of both negative and positive carriers
present at the same time, we must add the contributions from each kind of carrier. The total conductivity
will be given by

For very pure materials,  and  will be nearly equal. They will be smaller than in a doped material,
so the conductivity will be less. Also they will vary rapidly with temperature (like , as we
have seen), so the conductivity may change extremely fast with temperature.
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14–4 Semiconductor junctions

Fig. 14–8.A -  junction.

We would like to discuss now what happens if we take two pieces of germanium or silicon with different
internal characteristics—say different kinds or amounts of doping—and put them together to make a
“junction.” Let’s start out with what is called a -  junction in which we have -type germanium on one
side of the boundary and -type germanium on the other side of the boundary—as sketched in
Fig. 14–8. Actually, it is not practical to put together two separate pieces of crystal and have them in
uniform contact on an atomic scale. Instead, junctions are made out of a single crystal which has been
modified in the two separate regions. One way is to add some suitable doping impurity to the “melt”
after only half of the crystal has grown. Another way is to paint a little of the impurity element on the
surface and then heat the crystal causing some impurity atoms to diffuse into the body of the crystal.
Junctions made in these ways do not have a sharp boundary, although the boundaries can be made as
thin as  centimeters or so. For our discussions we will imagine an ideal situation in which these two
regions of the crystal with different properties meeting at a sharp boundary.
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Fig. 14–9.The electric potential and the carrier densities in an unbiased semiconductor junction.

On the -type side of the -  junction there are free electrons which can move about, as well as the
fixed donor sites which balance the overall electric charge. On the -type side there are free holes
moving about and an equal number of negative acceptor sites keeping the charge balanced. Actually, that
describes the situation before we put the two materials in contact. Once they are connected together the
situation will change near the boundary. When the electrons in the -type material arrive at the
boundary they will not be reflected back as they would at a free surface, but are able to go right on into
the -type material. Some of the electrons of the -type material will, therefore, tend to diffuse over into
the -type material where there are fewer electrons. This cannot go on forever because as we lose
electrons from the -side the net positive charge there increases until finally an electric voltage is built
up which retards the diffusion of electrons into the -side. In a similar way, the positive carriers of the

-type material can diffuse across the junction into the -type material. When they do this they leave
behind an excess of negative charge. Under equilibrium conditions the net diffusion current must be
zero. This is brought about by the electric fields, which are established in such a way as to draw the
positive carriers back toward the -type material.

The two diffusion processes we have been describing go on simultaneously and, you will notice, both
act in the direction which will charge up the -type material in a positive sense and the -type material
in a negative sense. Because of the finite conductivity of the semiconductor material, the change in
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potential from the -side to the -side will occur in a relatively narrow region near the boundary; the
main body of each block of material will have a uniform potential. Let’s imagine an -axis in a direction
perpendicular to the boundary surface. Then the electric potential will vary with , as shown in
Fig. 14–9(b). We have also shown in part (c) of the figure the expected variation of the density  of

-carriers and the density  of -carriers. Far away from the junction the carrier densities  and 
should be just the equilibrium density we would expect for individual blocks of materials at the same
temperature. (We have drawn the figure for a junction in which the -type material is more heavily
doped than the -type material.) Because of the potential gradient at the junction, the positive carriers
have to climb up a potential hill to get to the -type side. This means that under equilibrium conditions
there can be fewer positive carriers in the -type material than there are in the -type material.
Remembering the laws of statistical mechanics, we expect that the ratio of -type carriers on the two
sides to be given by the following equation:

The product  in the numerator of the exponential is just the energy required to carry a charge of 
through a potential difference .

We have a precisely similar equation for the densities of the -type carriers:

If we know the equilibrium densities in each of the two materials, we can use either of the two equations
above to determine the potential difference across the junction.

Notice that if Eqs. (14.10) and (14.11) are to give the same value for the potential difference , the
product  must be the same for the -side as for the -side. (Remember that .) We have
seen earlier, however, that this product depends only on the temperature and the gap energy of the
crystal. Provided both sides of the crystal are at the same temperature, the two equations are consistent
with the same value of the potential difference.

Since there is a potential difference from one side of the junction to the other, it looks something like a
battery. Perhaps if we connect a wire from the -type side to the -type side we will get an electrical
current. That would be nice because then the current would flow forever without using up any material
and we would have an infinite source of energy in violation of the second law of thermodynamics! There
is, however, no current if you connect a wire from the -side to the -side. And the reason is easy to see.
Suppose we imagine first a wire made out of a piece of undoped material. When we connect this wire to
the -type side, we have a junction. There will be a potential difference across this junction. Let’s say
that it is just one-half the potential difference from the -type material to the -type material. When we
connect our undoped wire to the -type side of the junction, there is also a potential difference at this
junction—again, one-half the potential drop across the -  junction. At all the junctions the potential
differences adjust themselves so that there is no net current flow in the circuit. Whatever kind of wire
you use to connect together the two sides of the -  junction, you are producing two new junctions, and
so long as all the junctions are at the same temperature, the potential jumps at the junctions all
compensate each other and no current will flow in the circuit.
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We have been assuming that a hole or an
electron produced in a junction region has a good chance of getting into the main body of the crystal
before recombining. The typical time for an electron or a hole to find an opposite partner and annihilate
it is for typical semiconductor materials in the range between  and  seconds. This time is,
incidentally, much longer than the mean free time  between collisions with scattering sites in the crystal
which we used in the analysis of conductivity. In a typical -  junction, the time for an electron or hole
formed in the junction region to be swept away into the body of the crystal is generally much shorter
than the recombination time. Most of the pairs will, therefore, contribute to an external current.

14–5Rectification at a semiconductor junction

We would like to show next how it is that a -  junction can act like a rectifier. If we put a voltage
across the junction, a large current will flow if the polarity is in one direction, but a very small current
will flow if the same voltage is applied in the opposite direction. If an alternating voltage is applied
across the junction, a net current will flow in one direction—the current is “rectified.” Let’s look again at
what is going on in the equilibrium condition described by the graphs of Fig. 14–9. In the -type
material there is a large concentration  of positive carriers. These carriers are diffusing around and a
certain number of them each second approach the junction. This current of positive carriers which
approaches the junction is proportional to . Most of them, however, are turned back by the high
potential hill at the junction and only the fraction  gets through. There is also a current of
positive carriers approaching the junction from the other side. This current is also proportional to the
density of positive carriers in the -type region, but the carrier density here is much smaller than the
density on the -type side. When the positive carriers approach the junction from the -type side, they
find a hill with a negative slope and immediately slide downhill to the p-type side of the junction. Let’s
call this current . Under equilibrium the currents from the two directions are equal. We expect then the
following relation:
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You will notice that this equation is really just the same as Eq. (14.10). We have just derived it in a
different way.

Suppose, however, that we lower the voltage on the -side of the junction by an amount —which
we can do by applying an external potential difference to the junction. Now the difference in potential
across the potential hill is no longer  but . The current of positive carriers from the -side to
the -side will now have this potential difference in its exponential factor. Calling this current , we
have

This current is larger than  by just the factor . So we have the following relation between 
and :

The current from the -side increases exponentially with the externally applied voltage . The current
of positive carriers from the -side, however, remains constant so long as  is not too large. When
they approach the barrier, these carriers will still find a downhill potential and will all fall down to the

-side. (If  is larger than the natural potential difference , the situation would change, but we will
not consider what happens at such high voltages.) The net current  of positive carriers which flows
across the junction is then the difference between the currents from the two sides:

The net current  of holes flows into the -type region. There the holes diffuse into the body of the
-region, where they are eventually annihilated by the majority -type carriers—the electrons. The

electrons which are lost in this annihilation will be made up by a current of electrons from the external
terminal of the -type material.

When  is zero, the net current in Eq. (14.14) is zero. For positive  the current increases rapidly
with the applied voltage. For negative  the current reverses in sign, but the exponential term soon
becomes negligible and the negative current never exceeds —which under our assumptions is rather
small. This back current  is limited by the small density of the minority -type carriers on the -side
of the junction.

If you go through exactly the same analysis for the current of negative carriers which flows across the
junction, first with no potential difference and then with a small externally applied potential
difference , you get again an equation just like (14.14) for the net electron current. Since the total
current is the sum of the currents contributed by the two carriers, Eq. (14.14) still applies for the total
current provided we identify  as the maximum current which can flow for a reversed voltage.
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Fig. 14–10.The current through a junction as a function of the voltage across it.

Fig. 14–11.The potential distribution in a transistor with no applied voltages.

The voltage-current characteristic of Eq. (14.14) is shown in Fig. 14–10. It shows the typical behavior of
solid state diodes—such as those used in modern computers. We should remark that Eq. (14.14) is true
only for small voltages. For voltages comparable to or larger than the natural internal voltage



difference , other effects come into play and the current no longer obeys the simple equation.

14–6The transistor

Perhaps the most important application of semiconductors is in the transistor. The transistor consists of
two semiconductor junctions very close together. Its operation is based in part on the same principles
that we just described for the semiconductor diode—the rectifying junction. Suppose we make a little
bar of germanium with three distinct regions, a -type region, an -type region, and another -type
region, as shown in Fig. 14–11(a). This combination is called a - -  transistor. Each of the two
junctions in the transistor will behave much in the way we have described in the last section. In
particular, there will be a potential gradient at each junction having a certain potential drop from the

-type region to each -type region. If the two -type regions have the same internal properties, the
variation in potential as we go across the crystal will be as shown in the graph of Fig. 14–11(b).

Now let’s imagine that we connect each of the three regions to external voltage sources as shown in
part (a) of Fig. 14–12. We will refer all voltages to the terminal connected to the left-hand -region so it
will be, by definition, at zero potential. We will call this terminal the emitter. The -type region is called
the base and it is connected to a slightly negative potential. The right-hand -type region is called the
collector, and is connected to a somewhat larger negative potential. Under these circumstances the
variation of potential across the crystal will be as shown in the graph of Fig. 14–12(b).
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Fig. 14–12.The potential distribution in an operating transistor.

Let’s first see what happens to the positive carriers, since it is primarily their behavior which controls the
operation of the - -  transistor. Since the emitter is at a relatively more positive potential than the
base, a current of positive carriers will flow from the emitter region into the base region. A relatively
large current flows, since we have a junction operating with a “forward voltage”—corresponding to the
right-hand half of the graph in Fig. 14–10. With these conditions, positive carriers or holes are being
“emitted” from the -type region into the -type region. You might think that this current would flow
out of the -type region through the base terminal . Now, however, comes the secret of the transistor.
The -type region is made very thin—typically  cm or less, much narrower than its transverse
dimensions. This means that as the holes enter the -type region they have a very good chance of
diffusing across to the other junction before they are annihilated by the electrons in the -type region.
When they get to the right-hand boundary of the -type region they find a steep downward potential hill
and immediately fall into the right-hand -type region. This side of the crystal is called the collector
because it “collects” the holes after they have diffused across the -type region. In a typical transistor,
all but a fraction of a percent of the hole current which leaves the emitter and enters the base is collected
in the collector region, and only the small remainder contributes to the net base current. The sum of the
base and collector currents is, of course, equal to the emitter current.

Now imagine what happens if we vary slightly the potential  on the base terminal. Since we are on a
relatively steep part of the curve of Fig. 14–10, a small variation of the potential  will cause a rather
large change in the emitter current . Since the collector voltage  is much more negative than the
base voltage, these slight variations in potential will not effect appreciably the steep potential hill
between the base and the collector. Most of the positive carriers emitted into the -region will still be
caught by the collector. Thus as we vary the potential of the base electrode, there will be a corresponding
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variation in the collector current . The essential point, however, is that the base current  always
remains a small fraction of the collector current. The transistor is an amplifier; a small current 
introduced into the base electrode gives a large current—  or so times higher—at the collector
electrode.

What about the electrons—the negative carriers that we have been neglecting so far? First, note that we
do not expect any significant electron current to flow between the base and the collector. With a large
negative voltage on the collector, the electrons in the base would have to climb a very high potential
energy hill and the probability of doing that is very small. There is a very small current of electrons to
the collector.

On the other hand, the electrons in the base can go into the emitter region. In fact, you might expect the
electron current in this direction to be comparable to the hole current from the emitter into the base.
Such an electron current isn’t useful, and, on the contrary, is bad because it increases the total base
current required for a given current of holes to the collector. The transistor is, therefore, designed to
minimize the electron current to the emitter. The electron current is proportional to , the
density of negative carriers in the base material while the hole current from the emitter depends
on , the density of positive carriers in the emitter region. By using relatively little doping
in the -type material  can be made much smaller than . (The very thin base
region also helps a great deal because the sweeping out of the holes in this region by the collector
increases significantly the average hole current from the emitter into the base, while leaving the electron
current unchanged.) The net result is that the electron current across the emitter-base junction can be
made much less than the hole current, so that the electrons do not play any significant role in operation
of the - -  transistor. The currents are dominated by motion of the holes, and the transistor performs
as an amplifier as we have described above.

It is also possible to make a transistor by interchanging the -type and -type materials in Fig. 14–11.
Then we have what is called an - -  transistor. In the - -  transistor the main currents are carried by
the electrons which flow from the emitter into the base and from there to the collector. Obviously, all the
arguments we have made for the - -  transistor also apply to the - -  transistor if the potentials of
the electrodes are chosen with the opposite signs.
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